Skip to main content

Giải bất phương trình: small (sqrt{10}+1)^{log_{3}x}-(sqrt{10}-1)^{log_{3}x}geq frac{2x}{3}

Giải bất phương trình:

Câu hỏi

Nhận biết

Giải bất phương trình: small (sqrt{10}+1)^{log_{3}x}-(sqrt{10}-1)^{log_{3}x}geq frac{2x}{3}


A.
small xgeq 3
B.
small 0<xleq 3
C.
small 0<xleq 9
D.
small xgeq 9
Đáp án đúng: A

Lời giải của Luyện Tập 365

Điều kiện: x>0

Với điều kiện trên bất phương trình đã cho tương đương:

small (sqrt{10}+1)^{log_{3}x}-(sqrt{10}-1)^{log_{3}x}geq frac{2}{3}.3^{log_{3}x}

<=>small (frac{sqrt{10}+1}{3})^{log_{3}x}-(frac{sqrt{10}-1}{3})^{log_{3}x}geq frac{2}{3}       (1)

Đặt: small t=(frac{sqrt{10}+1}{3})^{log_{3}x}  (t>0)

Ta có: (1) <=> small t-frac{1}{t}geq frac{2}{3}

<=>small 3t^{2}-2t-3geq 0 <=>begin{bmatrix} tgeq frac{sqrt{10}+1}{3}\ tleq frac{-sqrt{10}+1}{3} end{bmatrix}

Do t>0 nên small tgeq frac{sqrt{10}+1}{3}

Khi đó: small log_{3}xgeq 1<=>xgeq 3

Vậy small xgeq 3

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.