Skip to main content

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, AB = AD = 2a, CD = a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a.

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, AB = AD = 2a

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, AB = AD = 2a, CD = a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a.


A.
VS.ABCD = \frac{3a^{3}\sqrt{15}}{5}.
B.
VS.ABCD = \frac{7a^{3}\sqrt{15}}{5}.
C.
VS.ABCD = \frac{2a^{3}\sqrt{15}}{5}.
D.
VS.ABCD = \frac{a^{3}\sqrt{15}}{5}.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Học sinh tự vẽ hình

+Vì (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD) nên : SI ⊥(ABCD)

=>VS.ABCD = \frac{1}{3}SI.SABCD                (1)

Ta có ngay: SABCD = \frac{1}{2}(AB + CD)AD = 3a2  (2)

Gọi K là hình chiếu vuông góc của S trên BC, suy ra : IK ⊥BC (định lý ba đường vuông góc) =>g((SBC) và (ABCD)) = \widehat{SKI} = 600.

Ta có nhận xét: S∆IBC = SABCD – (S∆IBA + S∆ICD ) = 3a2\frac{3a^{2}}{2} = \frac{3a^{2}}{2}

Mặt khác, ta cũng có : S∆IBC = \frac{1}{2}IK.BC = \frac{1}{2}IK.\sqrt{(AB-CD)^{2}+AD^{2}}

⇔IK = \frac{2S_{\Delta IBC}}{\sqrt{(AB-CD)^{2}+AD^{2}}} = \frac{3a\sqrt{5}}{5}

Trong ∆SIK, ta có; SI = IK.tan\widehat{SKI}\frac{3a\sqrt{5}}{5}.tan600 = \frac{3a\sqrt{15}}{5}  (3)

Thay (2),(3) vào (1), ta được VS.ABCD = \frac{3a^{3}\sqrt{15}}{5}.

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.