Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D.

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D.


A.
C(-1; 6); D(4;1) hoặc D(-8; 7).
B.
C(-1; 6); D(-4;1) hoặc D(-8; 7).
C.
C(-1; 6); D(4;1) hoặc D(8; 7).
D.
C(1; 6); D(4;1) hoặc D(-8; 7).
Đáp án đúng: A

Lời giải của Luyện Tập 365

                                              Gọi I là giao điểm của AC và BD=>IB = IC.

Mà IB⊥IC nên ∆IBC vuông cân tại I => \widehat{ICB}= 450.

BH⊥AD =>BH⊥BC=>∆HBC vuông cân tại B=>I là trung điểm của đoạn HC.

Do CH⊥BD và trung điểm I của CH thuộc BD nên tọa độ điểm C thỏa mãn hệ \left\{\begin{matrix}2(x+3)-(y-2)=0\\\frac{x-3}{2}+2\frac{y+2}{2}-6=0\end{matrix}\right.

Do đó C(-1; 6).

Ta có  \frac{IC}{ID}= \frac{IB}{ID}= \frac{BC}{AD}= \frac{1}{3}=>ID = 3IC=>CD = \sqrt{IC^{2}+ID^{2}}

= IC√10 = \frac{CH\sqrt{10}}{2}= 5√2.

Ta có D(6 – 2t; t) và CD = 5√2 suy ra (7 – 2t)2 + (t – 6)2 = 50⇔\begin{bmatrix}t=1\\t=7\end{bmatrix}

Do đó D(4;1) hoặc D(-8; 7).

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx