Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M( - \frac{9}{2};\frac{3}{2} ) là trung điểm của cạnh AB, điểm H(-2;4) và điểm I(-1;1) lần lượt là chân đường cao kẻ từ B và tâm đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ điểm C.

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M( -

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M( - \frac{9}{2};\frac{3}{2} ) là trung điểm của cạnh AB, điểm H(-2;4) và điểm I(-1;1) lần lượt là chân đường cao kẻ từ B và tâm đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ điểm C.


A.
C(-1; 6).
B.
C(1; 6).
C.
C(-1; - 6).
D.
C(1;- 6).
Đáp án đúng: A

Lời giải của Luyện Tập 365

\overrightarrow{IM}= (- \frac{7}{2} ; \frac{1}{2}). Ta có M∈AB và AB⊥IM nên đường thẳng AB có phương trình 7x – y + 33 = 0.

A∈AB=>A(a; 7a + 33). Do M là trung điểm của AB nên B(-a – 9; -7a – 30). Ta có HA⊥HB => \overrightarrow{HA}.\overrightarrow{HB} = 0 =>a2 + 9a + 20 = 0 =>a = -4 hoặc a = -5.

+Với a = -4 =>A(-4;5), B(-5; -2). Ta có BH⊥AC nên đường thẳng AC có phương trình x + 2y – 6 = 0. Do đó C(6 – 2c; c). Từ IC = IA suy ra (7 – 2c)2 + (c – 1)2 = 25 . Do đó c =1 hoặc c = 5. Do C khác A, suy ra C(4;1).

+Với a = -5 =>A(-5; -2), B(-4; 5). Ta có BH⊥AC nên đường thẳng AC có phương trình 2x – y + 8 = 0. Do đó C(t; 2t + 8). Từ IC = IA suy ra (t + 1)2 + (2t + 7)2 = 25. Do đó t = -1 hoặc  t = -5. Do C khác A, suy ra C(-1; 6).

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.