Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD biết M(2; 1); N(4;−2); P(2; 0); Q(1; 2), lần lượt thuộc các cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông ABCD.

Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD biết M(2; 1); N(4;−2); P(2;

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD biết M(2; 1); N(4;−2); P(2; 0); Q(1; 2), lần lượt thuộc các cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông ABCD.


A.
AB: x − y + 1= 0; AD: −x + y + 3 = 0; DC: x − y − 2 = 0; CB: −x − y + 2 = 0
B.
AB: x − y − 1= 0; AD: − x − y + 3 = 0; DC: x − y − 2 = 0; CB: −x − y + 2 = 0
C.
AB: −x + 2y = 0; AD: 2x + y − 4 = 0; DC: −x + 2y + 2 = 0; CB: 2x + y − 6 = 0
D.
cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi phương trình AB: a(x − 2) + b(y − 1) = 0 khi đó phương trình AD:

b(x − 1) − a(y − 2) = 0.

Tứ giác ABCD là hình vuông <=> d(P; AB) = d(N; AD) <=> │b│=│3b + 4a│

<=> \left [ \begin{matrix} 2a=-b & \\ a=-b & \end{matrix}\right.

 * Với 2a = -b chọn b = 2, a = -1 phương trình các cạnh của hình vuông :

AB: −x + 2y = 0; AD: 2x + y − 4 = 0; DC: −x + 2y + 2 = 0; CB: 2x + y − 6 = 0

* Với a = -b chọn b = -1, a = 1 phương trình cách cạnh của hình vuông:

AB: x y −1 = 0; AD: −x y + 3 = 0; DC : x y − 2 = 0; CB: −x y + 2 = 0

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.