Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy ,cho hình chữ nhật ABCD có: AB = 3√2, BC = 2√2, điểm E thuộc đoạn DC sao cho EC = \frac{4\sqrt{2}}{3} ,điểm I (\frac{14}{3} ;\frac{17}{3} ) thuộc đường thẳng BE. Biết đường thẳng AC có phương trình : x - 5y + 3 = 0 và các điểm A, B có hoành độ nguyên dương. Tìm tọa độ các đỉnh A, B, C, D của hình chữ nhật.

Trong mặt phẳng với hệ tọa độ Oxy ,cho hình chữ nhật ABCD có: AB = 3√2, BC = 2√2, đ

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy ,cho hình chữ nhật ABCD có: AB = 3√2, BC = 2√2, điểm E thuộc đoạn DC sao cho EC = \frac{4\sqrt{2}}{3} ,điểm I (\frac{14}{3} ;\frac{17}{3} ) thuộc đường thẳng BE. Biết đường thẳng AC có phương trình : x - 5y + 3 = 0 và các điểm A, B có hoành độ nguyên dương. Tìm tọa độ các đỉnh A, B, C, D của hình chữ nhật.


A.
A(4; 6), B(5; 3), C(5; 2), D(2; -6)
B.
A(-2;-1), B(5; 4), C(7; 2), D(5; -1)
C.
A(2; 1), B(5; 4), C(7; 2), D(4;-1)
D.
A(1; 6), B(2; 3), C(5; 5), D(2;-6)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Chứng minh được BI vuông góc với AC nên phương trình đường thẳng 

BI: 5( x - \frac{14}{3}) + y - \frac{17}{3} = 0 ⇔ 5x + y - 29 = 0

=>B(t ;29 - 5t)

Gọi J là giao điểm của AC và BE, tìm được J (  \frac{71}{13} ;\frac{22}{13} )

Tam giác ABC có\frac{1}{BJ^{2}}=\frac{1}{BA^{2}}+\frac{1}{BC^{2}}=\frac{13}{72}  =>  BJ2 = \frac{72}{13}

\Leftrightarrow \left ( t-\frac{71}{13} \right )^{2}+\left ( 29-5t-\frac{22}{13} \right )^{2}=\frac{72}{13}

\Leftrightarrow 26\left ( t-\frac{71}{13} \right )^{2}=\frac{72}{13}\Leftrightarrow \left ( t-\frac{71}{13} \right )^{2}=\frac{36}{13^{2}}

<=> t = 5 hoặc t = \frac{77}{13} (loại)

A ∈ AC =>A(5a - 3 ;a); AB = 3√2 => a = 1 hoặc a = \frac{31}{13} (loại)

Với a = 1 (*) được A(2;1)

Đường thẳng BC đi qua điểm B(5;4) và có vecto pháp tuyến \overrightarrow{AB} = (3;3) nên phương trình BC là: x + y - 9 = 0, tìm được C(7;2).

\overrightarrow{AB}= \overrightarrow{DC} => D(4; -1)

Kết luận: A(2; 1), B(5; 4), C(7; 2), D(4;-1)

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.