Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(0; 4), B(5; 0) và đường thẳng (d): 2x − 2y + 1 = 0. Lập phương trình hai đường thẳng lần lượt đi qua A, B nhận đường thẳng (d) làm đường phân giác.

Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(0; 4), B(5; 0) và đường thẳng (d): 2x −

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(0; 4), B(5; 0) và đường thẳng (d): 2x − 2y + 1 = 0. Lập phương trình hai đường thẳng lần lượt đi qua A, B nhận đường thẳng (d) làm đường phân giác.


A.
AI: 3x + y + 3 = 0; BI: x + 3y − 5 = 0
B.
AI: 3x + y − 4 = 0; BI : x + 3y − 5 = 0
C.
AI: 3x + y − 4 = 0; BI: x - 3y + 5 = 0
D.
AI: 3x - y − 4 = 0; BI : x + 3y − 5 = 0
Đáp án đúng: B

Lời giải của Luyện Tập 365

- Lấy B’ đối xứng với B qua d

Giả sử H ∈ d sao cho BH ⊥ d  

Suy ra  H = \left ( t;\frac{2t+1}{2} \right )\Rightarrow \overrightarrow{BH}=\left ( t-5;\frac{2t+1}{2} \right )

BH ⊥ d \Leftrightarrow 2(t-5)+2\left ( \frac{2t+1}{2} \right )=0\Leftrightarrow t=\frac{9}{4}

\Rightarrow H=\left ( \frac{9}{4};\frac{11}{4} \right )\Rightarrow B'=\left ( -\frac{1}{2};\frac{11}{2} \right )

 

- Phương trình đường thẳng AB’     3x + y −4 = 0 - Tìm giao điểm I của d và AB’: Tọa độ của I là nghiệm của hệ  \left\{\begin{matrix} 2x-2y+1=0\\ 3x+y-4=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{7}{8}\\ y=\frac{11}{8} \end{matrix}\right.Hai đường thẳng cần tìm là AI và BI 

Phương trình AI : 3x + y −4 = 0 

Phương trình BI : x +3y −5 = 0

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.