Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1):x2+y2=4, (C2):x2+y2-12x+18=0 và đường thẳng (d):x-y-4=0. Viết phương trình đường tròn có tâm thuộc (C2), tiếp xúc với (d) và cắt (C1) tại hai điểm A,B sao cho AB vuông góc với (d)

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1):x2

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1):x2+y2=4, (C2):x2+y2-12x+18=0 và đường thẳng (d):x-y-4=0. Viết phương trình đường tròn có tâm thuộc (C2), tiếp xúc với (d) và cắt (C1) tại hai điểm A,B sao cho AB vuông góc với (d)


A.
(x-3)2+(y-3)2=8
B.
(x-3)2+(y+1)2=16
C.
(x+2)2+(y-1)2=12
D.
(x-3)2+(y+3)2=4
Đáp án đúng: A

Lời giải của Luyện Tập 365

Giả sử đường tròn (C) có tâm I(a;b) và bán kính R.

(C) cắt (C1) (Có tâm O) tại hai điểm phân biệt A,B nên:

AB⊥OI => OI//(d) =>(OI):x-y=0

Tâm I thuộc (OI) và đường tròn (C2), suy ra:

 \left\{\begin{matrix} a-b=0\\a^{2}+b^{2}-12a+18=0 \end{matrix}\right.<=>\left\{\begin{matrix} a=b\\a^{2}-6a+9=0 \end{matrix}\right. <=>a=b=3

Để (C) tiếp xúc với (d) điều kiện lafL R=d(I,(d))=\frac{|a-b-4|}{\sqrt{2}}=2\sqrt{2}

Vậy đường tròn (C) có phương trình: (x-3)2+(y-3)2=8

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.