Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1): x2 + y2 = 4, (C2): x2 + y2 – 12x + 18 = 0 và đường thẳng d : x – y – 4 = 0. Viết phương trình đường tròn có tâm thuộc (C2), tiếp xúc với d và cắt (C1) tại hai điểm phân biệt A và B sao cho AB vuông góc với d.

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1): x2

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho các đường tròn (C1): x2 + y2 = 4, (C2): x2 + y2 – 12x + 18 = 0 và đường thẳng d : x – y – 4 = 0. Viết phương trình đường tròn có tâm thuộc (C2), tiếp xúc với d và cắt (C1) tại hai điểm phân biệt A và B sao cho AB vuông góc với d.


A.
Phương trình của (C) là (x + 3)2 + (y + 3)2= 8.  
B.
Phương trình của (C) là (x – 3)2 + (y + 3)2= 8.  
C.
Phương trình của (C) là (x – 3)2 + (y – 3)2= 8.  
D.
Phương trình của (C) là (x + 3)2 + (y – 3)2= 8.  
Đáp án đúng: C

Lời giải của Luyện Tập 365

(C1) có tâm là gốc tọa độ O. Gọi I là tâm của đường tròn (C ) cần viết phương trình , ta có AB ⊥ OI. Mà AB ⊥ d và O không thuộc d nên OI // d, do đó OI có phương trình y = x.

Mặt khác I ∈ (C2), nên tọa độ của I thỏa mãn hệ : left{begin{matrix}y=x\x^{2}+y^{2}-12x+18=0end{matrix}right.left{begin{matrix}x=3\y=3end{matrix}right.=> I(3; 3)

Do (C ) tiếp xúc với d nên (C ) có bán kính R = d(I, d) = 2√2.

Vậy phương trình của (C) là (x – 3)2 + (y – 3)2 = 8.

 

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}