Skip to main content

Trong mặt phẳng tọa độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2;0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y - 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG.

Trong mặt phẳng tọa độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2;0). Hai đỉnh

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2;0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y - 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG.


A.
 (x + 5)2+(y - 1)2 = \frac{81}{25}
B.
 (x - 5)+ (y + 1)2 = \frac{81}{25}
C.
 (x - 5)+ (y - 1)2 = \frac{1}{25}
D.
 (x - 5)+ (y - 1)2 = \frac{81}{25}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Giả sử B(xB, yB) ∈ d1 => xB = -yB - 5; C(xC, yC) ∈ d2 =>xC = -2yC + 7

Vì G là trọng tâm nên ta có hệ: \left\{\begin{matrix} x_{B} +x_{C}+2=6& & \\ y_{B} +y_{C}+3=0& & \end{matrix}\right.

Từ các phương trình trên ta có: B(-1;-4); C(5; 1)

Ta có \overrightarrow{BG} = (3; 4) => vecto pháp tuyến \overrightarrow{n_{BG}} = (4; -3) nên phương trình

BG: 4x - 3y - 8 = 0

Bán kính R = d(C; BG) = \frac{9}{5} => phương trình đường tròn (x - 5)+ (y - 1)2\frac{81}{25}

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.