Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d: \frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-1}{3}  cắt nhau tại điểm I. Gọi  ∆ là đường thẳng nằm trong (P),  ∆ vuông góc với d, khoảng cách từ I đến  ∆ bằng 3√2. Tìm hình chiếu vuông góc của I trên   ∆.  

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d:

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d: \frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-1}{3}  cắt nhau tại điểm I. Gọi  ∆ là đường thẳng nằm trong (P),  ∆ vuông góc với d, khoảng cách từ I đến  ∆ bằng 3√2. Tìm hình chiếu vuông góc của I trên   ∆.

 


A.
M(6;0;7) hoặc M(0;0;-1)
B.
M(6;0;7) hoặc M(0;0;1)
C.
M(6;0;7)
D.
M(0;0;1)
Đáp án đúng: B

Lời giải của Luyện Tập 365

I = d ∩(P) ⇒ I(3;0;4)

Gọi (Q) là mặt phẳng chứa d và vuông góc với (P) suy ra một vectơ pháp tuyến của(Q) là:   \vec{n}_{Q} = [\vec{n}_{P},\vec{u}_{d}]= (2;−4;−2)//(1;−2;−1) 

Gọi d1 là giao tuyến của 2 mặt p hẳng (P) và (Q) suy ra một vectơ chỉ phương của d1 là: \vec{u}_{d_{1}}=\left [ \vec{n}_{P},\vec{n}_{Q} \right ]  = (−3;0;−3) //( 1;0;1)

Phương trình d1 đi qua I(3;0;4) là \left\{\begin{matrix} x=3+t\\ y=0\\ z=4+t \end{matrix}\right.

Gọi M là hình chiếu của I trên ∆ ⇒ M d1 M(3+t;0;4+t

ta có d(I ;∆) = 3√2 <=>  IM =  3√2 <=>  2t2 = 18 <=> t=3 hoặc t=-3

Vậy M(6;0;7) hoặc M(0;0;1)

 

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.