Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 3); B(2;-2;-3) và đường thẳng ∆: \frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{3}. Chứng minh A, B và ∆ cùng nằm trong một mặt phẳng. Tìm toạ độ điểm M thuộc ∆ sao cho MA4 + MB4 nhỏ nhất.

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 3); B(2;-2;-3) và đường thẳng

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 3); B(2;-2;-3) và đường thẳng ∆: \frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{3}. Chứng minh A, B và ∆ cùng nằm trong một mặt phẳng. Tìm toạ độ điểm M thuộc ∆ sao cho MA+ MB4 nhỏ nhất.


A.
M(1;-1; 2)
B.
M(2; 1; 2)
C.
M(2;-1; 0)
D.
M(2;-1; 2)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Phương trình đường thẳng AB: \left\{ \begin{array}{l} x = 2\\ y = t\\ z = 3 + 3t \end{array} \right.

Phương trình ∆: \left\{ \begin{array}{l} x = 2 + t'\\ y = - 1 + 2t'\\ z = 3t' \end{array} \right.$ .

Gọi I = AB ∩ ∆ => \left\{ \begin{array}{l} 2 = 2 + t'\\ t = - 1 + 2t'\\ 3 + 3t = 3t' \end{array} \right.

=>\left\{ \begin{array}{l} t = - 1\\ t' = 0 \end{array} \right. => I(2;-1; 0)

Vậy AB và ∆ cắt nhau tại I nên A, B và ∆ đồng phẳng

Ta có \overrightarrow{IA} = (0; 1; 3) ,\overrightarrow{IB} = (0;-1;-3) =>\overrightarrow{IA} = -\overrightarrow{IB} => IA + IB = AB

Khi đó MA+ MB4 ≥  \frac{1}{2}(MA2 + MB2)2 ≥  \frac{1}{2}{\left( {\frac{1}{2}e_\left( {MA + MB} \right)}^2 \right)^2} 

\frac{1}{8}AB4 = \frac{1}{8}(IA + IB)4.

=>MA+ MB4 nhỏ nhất khi M trùng với I(2; -1; 0)

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.