Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2-; -3) và đường thẳng d: \left\{\begin{matrix}x=2\\y=1-t,t\in R\\z=t\end{matrix}\right. , t ∈ R .Tìm điểm C trên đường thẳng d sao cho chu vi tam giác ABC nhỏ nhất.

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2-; -3) và đường thẳng d: \left\{\begin{matrix}x=2\\y=1-t,t\in R\\z=t\end{matrix}\right. , t ∈ R .Tìm điểm C trên đường thẳng d sao cho chu vi tam giác ABC nhỏ nhất.


A.
 C ( 2;  \frac{7}{3} ; - \frac{4}{3})
B.
 C ( - 2;  \frac{7}{3} ; - \frac{4}{3})
C.
 C ( 2; - \frac{7}{3} ; - \frac{4}{3})
D.
 C ( 2;  \frac{7}{3} ;  \frac{4}{3})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: C(2;1 – t ; t), CA = \sqrt{2t^{2}+4t+3}, CB = \sqrt{2t^{2}+8t+12}

=>\frac{CA+CB}{\sqrt{2}} = \sqrt{(t+1)^{2}+\frac{1}{2}} + \sqrt{(t+2)^{2}+2}

Đặt  \vec{u}= (t + 1;\frac{1}{\sqrt{2}} ), \vec{v}= ( - t – 2; √2).

Ta có: |\vec{u}  |   +  | \vec{v}  |  ≥ | \vec{u} +  \vec{v} | =>chu vi tam giác ABC nhỏ nhất khi \vec{u},\vec{v} cung chiều  ⇔\frac{t+1}{-t-2} = \frac{1}{2}⇔  t = - \frac{4}{3}

Vậy C ( 2;  \frac{7}{3} ; - \frac{4}{3})

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.