Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình ∆: \frac{x}{1} = \frac{y-2}{-1} = \frac{z-1}{-1}. Viết phương trình mặt phẳng (P) chưa đường thẳng ∆, biết rằng (P) tạo với các trục Oy, Oz những góc bằng nhau.

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương tr

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình ∆: \frac{x}{1} = \frac{y-2}{-1} = \frac{z-1}{-1}. Viết phương trình mặt phẳng (P) chưa đường thẳng ∆, biết rằng (P) tạo với các trục Oy, Oz những góc bằng nhau.


A.
(P): 2x - y - z - 3 = 0 (P): y - z - 1 = 0
B.
(P): 2x + y + z + 3 = 0 (P): y - z - 1 = 0
C.
(P): 2x + y + z - 3 = 0 (P): y - z + 1 = 0
D.
(P): 2x + y + z - 3 = 0 (P): y - z - 1 = 0
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi VTPT của mặt phẳng (P) là \overrightarrow{n_{p}} (a ; b ; c), VTCP của đường thẳng ∆ là \overrightarrow{u_{p}} (1 ; -1 ; -1)

Hai trục Oy, Oz có VTCP lần lượt là \overrightarrow{j} (0 ; 1 ; 0), \overrightarrow{k} (0 ; 0 ; 1). Vì ∆ nằm trên (P) nên (lỗi) ⊥ \overrightarrow{n_{p}} ⇔ a - b - c = 0 ⇒ a = b + c

Mặt khác \widehat{(Oy,(P))} = \widehat{(Oz,(P))} ⇔ |cos(\overrightarrow{j} , \overrightarrow{n_{p}})| = |cos(\overrightarrow{k} , \overrightarrow{n_{p}})| ⇔ |b| = |c|

Với  b = c, ta chọn b = c = 1 ⇒ a = 2. Vì (P) đi qua M(0 ; 2 ; 1) ∈ ∆ nên

(P): 2x + y + z - 3 = 0

Với b = -c, ta chọn b = 1, c = -1 ⇒ a = 0. Vì (P) đi qua M(0 ; 2 ; 1) ∈ ∆ nên(P): y - z - 1 = 0

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .