Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-1}{2}=\frac{y-2}{1}=\frac{z}{-1} và mặt cầu (S) có phương trình (x-3)2 + (y-2)2 + (z+1)2 =25. Tìm tọa độ của điểm A trên đường thẳng ∆ và tọa độ điểm B trên mặt cầu (S) sao cho A và B đối xứng với nhau qua Ox.  

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆:  và mặt cầu (S) có phương trình

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-1}{2}=\frac{y-2}{1}=\frac{z}{-1} và mặt cầu (S) có phương trình (x-3)2 + (y-2)2 + (z+1)2 =25. Tìm tọa độ của điểm A trên đường thẳng ∆ và tọa độ điểm B trên mặt cầu (S) sao cho A và B đối xứng với nhau qua Ox.

 


A.
 A( \frac{7}{3};\frac{8}{3};-\frac{2}{3}) và B(-1;-1;-1)
B.
 A( \frac{7}{3};\frac{8}{3};-\frac{2}{3}) và B(\frac{7}{3};-\frac{8}{3};\frac{2}{3})
C.
A(-1;1;1) và B(-1;-1;-1)
D.
cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi A(1+2t; 2+t; -t) là điểm trên ∆ và H(1+2t;0;0) là hình chiếu của A trên Ox

Vì A và B đối xứng với nhau qua trục Ox nên H là trung điểm AB, do đó B(1+2t; -2-t; t)

B  ϵ  (S) <=>(2t-2)2 + (-t-4)2 + (t+1)2 = 25 <= > 6t2 + 2t -4 =0 <= > t=-1 hoặc t= 2/3

+) Với t= -1 ta có A(-1;1;1) và B(-1;-1;-1)

+) Với t= 2/3 ta có A( \frac{7}{3};\frac{8}{3};-\frac{2}{3}) và B(\frac{7}{3};-\frac{8}{3};\frac{2}{3})

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.