Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng () \frac{x-1}{1}=\frac{y+1}{-2}=\frac{z-1}{3}  hai điểm A(2;1;1); B(1;1;0) . Tìm điểm M thuộc () sao cho tam giác AMB có diện tích nhỏ nhất. 

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (∆)

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng () \frac{x-1}{1}=\frac{y+1}{-2}=\frac{z-1}{3}  hai điểm A(2;1;1); B(1;1;0) . Tìm điểm M thuộc () sao cho tam giác AMB có diện tích nhỏ nhất. 


A.
M(\frac{5}{6}; \frac{2}{3};-\frac{3}{4})
B.
M(\frac{1}{6}; \frac{2}{3};\frac{3}{2})
C.
M(\frac{1}{6}; \frac{2}{3};-\frac{3}{2})
D.
M(\frac{1}{6}; \frac{2}{3};-\frac{3}{4})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi M(1+t;−1−2t;1+3t)∈d . Ta có: \overrightarrow{AM}= (−1+t;−2−2t;3t), \overrightarrow{AB} = (−1;0;−1)

\left [ \overrightarrow{AM};\overrightarrow{AB} \right ]=(-2t-2;2t+1;2t+2)

\Rightarrow S_{AMB}=\frac{1}{2}\left | \left [ \overrightarrow{AM};\overrightarrow{AB} \right ] \right |=\frac{1}{2}\sqrt{12t^{2}+20t+9}

=\frac{1}{2}\sqrt{12.(t+\frac{5}{6})^{2}+\frac{2}{3}}\geq \frac{1}{2}\sqrt{\frac{2}{3}}

Dấu đẳng thức xảy ra khi và chỉ khi t= -\frac{5}{6}

Vậy M(\frac{1}{6}; \frac{2}{3};-\frac{3}{2})

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.