Skip to main content

Trong không gian với hê tọa độ Oxyz, cho các điểm A (3 ; -1 ; 1), B (-1 ; 0 ; -2), C (4 ; 1; -1), D (3 ; 2 ; -6). Viết phương trình mặt cầu (S) tiếp xúc với hai đường thẳng AC và BD lần lượt tại A và B. 

Trong không gian với hê tọa độ Oxyz, cho các điểm A (3 ; -1 ; 1), B (-1

Câu hỏi

Nhận biết

Trong không gian với hê tọa độ Oxyz, cho các điểm A (3 ; -1 ; 1), B (-1 ; 0 ; -2), C (4 ; 1; -1), D (3 ; 2 ; -6). Viết phương trình mặt cầu (S) tiếp xúc với hai đường thẳng AC và BD lần lượt tại A và B. 


A.
(S): (x – 1)2 + (y + 2)2 + (z - 1)2 = 9
B.
(S): (x – 1)2 + (y + 2)2 + (z + 1)2 = 9
C.
(S): (x – 1)2 + (y - 2)2 + (z + 1)2 = 9
D.
(S): (x + 1)2 + (y + 2)2 + (z + 1)2 = 9
Đáp án đúng: B

Lời giải của Luyện Tập 365

Mặt phẳng (P) đi qua A và vuông góc với AC có phương trình

(P): x + 2y - 2z + 1 = 0

Mặt phẳng (Q) đi qua B và vuông góc với BD có phương trình

(Q): 2x + y - 2z - 2 = 0

Khi đó tâm I của mặt cầu (S) sẽ nằm trên giao tuyến ∆ của (P) và (Q). Ta có

∆: \frac{x-3}{2} = \frac{y}{2} = \frac{z-2}{3}

Khi đó I (3 + 2t; 2t ; 2 + 3t). Ta có

IA = IB ⇔ (2t)2 + (2t + 1)2 + (1 + 3t)2 = (4 + 2t)2 + (2t)2 + (4 + 3t)2  

⇔ t = -1

Từ đó suy ra I (1 ; -2 ; -1), R = IA = 3. Phương trình mặt cầu (S) là:

(S): (x – 1)2 + (y + 2)2 + (z + 1)2 = 9

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.