Skip to main content

Trong không gian tọa độ Oxyz cho hai đường thẳng: ∆1:\frac{x}{2} =\frac{y-1}{1}=\frac{z-1}{1} , ∆2:\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-2}{1}và điểm A(1;-1;2). Tìm tọa độ điểm B, C lần lượt thuộc ∆1, ∆2 sao cho đường thẳng BC thuộc mặt phẳng đi qua điểm A và đường thẳng ∆1 đồng thời đường thẳng BC vuông góc với ∆2

Trong không gian tọa độ Oxyz cho hai đường thẳng: ∆1:

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz cho hai đường thẳng: ∆1:\frac{x}{2} =\frac{y-1}{1}=\frac{z-1}{1} , ∆2:\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-2}{1}và điểm A(1;-1;2). Tìm tọa độ điểm B, C lần lượt thuộc ∆1, ∆2 sao cho đường thẳng BC thuộc mặt phẳng đi qua điểm A và đường thẳng ∆1 đồng thời đường thẳng BC vuông góc với ∆2


A.
 B(-4;-1;-1),C(-1;3;0)
B.
 B(-4;3;-1),C(3;3;0)
C.
 B(2;-1;-1),C(0;3;0)
D.
 B(-4;-1;0),C(4;3;0)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có∆1 đi qua D(0;1;1), có VTCP \vec{u_{1}}(2;1;1), \vec{AD}=(1;2;-1)

=> [\vec{u_{1}},\vec{AD}]=(-3,1,5)

Gọi (P) là mặt phẳng đi qua A và đường thẳng ∆1 .

Suy ra phương trình (P):-3x+y-5z-6=0

 ∆2 cắt (P) tại C => C(-1;3;0)

B∈∆1 <=> B(2t;1+t;1+t), ∆2 có VTCP \vec{u_{2}}(1;-1;1), \vec{BC}=(-1-2t;2-t;1-t)

BC⊥∆2 <=> \vec{BC}.\vec{u_{2}}=0 <=> t=-2. Suy ra B(-4;-1;-1)

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.