Skip to main content

Trong không gian tọa độ cho mặt phẳng (α): x - 2y + 2z + 6 = 0 . (α) cắt 3 trục tọa độ tại A, B, C. Gọi H là trực tâm tam giác ABC. Tìm tọa độ A, B, C, H.

Trong không gian tọa độ cho mặt phẳng (α): x - 2y + 2z + 6 = 0 . (α) cắt 3 trục tọa độ tại

Câu hỏi

Nhận biết

Trong không gian tọa độ cho mặt phẳng (α): x - 2y + 2z + 6 = 0 . (α) cắt 3 trục tọa độ tại A, B, C. Gọi H là trực tâm tam giác ABC. Tìm tọa độ A, B, C, H.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

* (α) cắt Ox tại A: y = z = 0 => x = -6 => A(-6, 0, 0)

Tương tự B(0, 3, 0), C(0, 0, -3).

Ta có: AB ⊥ OC, AB ⊥ HC => AB ⊥ (OHC) = AB ⊥ OH

Tương tự: AC ^ OH => OH ^ (ABC) Þ H là hình chiếu của O lên (α).

OH có vectơ chỉ phương \overrightarrow{n}(1,-2,2) => OH \left\{\begin{matrix} x=t\\ y=-2t\\ z=2t \end{matrix}\right.

H ∈ (α) => t + 4t + 4t + 6 = 0 => t = -\frac{2}{3} => H(-\frac{2}{3},\frac{4}{3},-\frac{4}{3})

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).