Skip to main content

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ \overrightarrow{ OA} cùng phương với vectơ \overrightarrow{ u} = (0; 1; 1) và thể tích tứ diện ABCD bằng \frac{5}{6}. Tìm tọa độ điểm A.

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ

Câu hỏi

Nhận biết

Trong không gian Oxyz , cho tứ diện ABCD , biết B(−1;0;2),C(−1;1;0),D(2;1;−2),vectơ \overrightarrow{ OA} cùng phương với vectơ \overrightarrow{ u} = (0; 1; 1) và thể tích tứ diện ABCD bằng \frac{5}{6}. Tìm tọa độ điểm A.


A.
 A(0 ; 1 ; 1)
B.
 A(0 ; -\frac{1}{9} ; -\frac{1}{9} )
C.
 A(0 ; 2 ; 1) và A(0 ; -\frac{1}{9} ; -\frac{1}{9} )
D.
cả A và B
Đáp án đúng: D

Lời giải của Luyện Tập 365

Tìm tọa độ điểm A.

Từ giả thiết có \overrightarrow{OA}= t. \overrightarrow{u}= (0;t;t) ⇒ A(0; t; t)

. Suy ra  [\overrightarrow{BC},\overrightarrow{BD}]=(-2;-6;-3)

 \left [ \overrightarrow{BC},\overrightarrow{BD} \right ]\overrightarrow{BA}=-9t+4

Ta có

VABCD=\left | \frac{1}{6}\left [ \overrightarrow{BC},\overrightarrow{BD} \right ]\overrightarrow{BA}\left |\Leftrightarrow \frac{5}{6}=\frac{1}{6}\left | -9t+4 \right |  ⇔t=1; t=-\frac{1}{9}

Với t =1⇒ A(0;1;1) .

Với t =-\frac{1}{9}< 0, => A(0 ; -\frac{1}{9} ; -\frac{1}{9} )

Vậy có 2 điểm A thỏa là A(0 ; 1 ; 1) và A(0 ; -\frac{1}{9} ; -\frac{1}{9} )

 

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.