Skip to main content

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - 2z - 3 = 0, đường thẳng ∆: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z}{2} và mặt cầu (S): x2 + y2 + z2 – 2x + 6y – 4z - 2 = 0. Hãy viết phương trình mặt phẳng (Q) song song với ∆, vuông góc với (P) và tiếp xúc với mặt cầu (S).

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - 2z - 3 = 0, đường thẳng
∆:  =  =  và

Câu hỏi

Nhận biết

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - 2z - 3 = 0, đường thẳng

∆: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z}{2} và mặt cầu (S): x2 + y2 + z2 – 2x + 6y – 4z - 2 = 0. Hãy viết phương trình mặt phẳng (Q) song song với ∆, vuông góc với (P) và tiếp xúc với mặt cầu (S).


A.
 (Q): 2x - 2y - x + 6 = 0 hoặc (Q): 2x - 2y - z - 18 = 0
B.
 (Q): 2x + 2y - z + 6 = 0 hoặc (Q): 2x + 2y - z + 18 = 0
C.
 (Q): 2x - 2y - z + 2 = 0 hoặc (Q): 2x - 2y - z + 1 = 0
D.
 (Q): 2x - 2y - 2z + 6 = 0 hay (Q) : 2x - 2y - 2z + 18 = 0
Đáp án đúng: A

Lời giải của Luyện Tập 365

(P) có vecto pháp tuyến là \overrightarrow{n_{p}} (1; 2; -2). ∆ có vecto chỉ phương là

 \overrightarrow{a_{\Delta }} = (2; 1; 2)

(Q) // (∆) và vuông góc (P) nên (Q) có vecto pháp tuyến là: 

\overrightarrow{n_{Q }} = [\overrightarrow{n_{p}}.\overrightarrow{a_{\Delta }}] = (6; -6; -3 )= 3(2; -2; -1) => (Q): 2x - 2y - z + D = 0.

(S) có tâm I(1; -3; 2) và bán kính R =  \sqrt{1^{2}+3^{2}+2^{2}+2} = 4

(Q) tiếp xúc (S) ⇔ d(I; (Q)) = R ⇔ \frac{|2.1-2(-3)-2+D|}{\sqrt{2^{2}+2^{2}+1^{2}}} = 4

 ⇔ [_{D=-18}^{D=6}

Vậy (Q): 2x - 2y - z + 6 = 0 hoặc (Q): 2x - 2y - z - 18 = 0.

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.