Skip to main content

Trong không gian Oxyz cho họ đường thẳng dK là giao tuyến cảu các mặt phẳng (PK): x – ky + z – k = 0 (QK): kx + y – kz – 1 = 0. Chứng minh rằng trong mặt phẳng (Oxy) đường thẳng ∆K luôn luôn tiếp xúc với một đường tròn cố định.

Trong không gian Oxyz cho họ đường thẳng dKlà giao tuyế

Câu hỏi

Nhận biết

Trong không gian Oxyz cho họ đường thẳng dK là giao tuyến cảu các mặt phẳng (PK): x – ky + z – k = 0 (QK): kx + y – kz – 1 = 0. Chứng minh rằng trong mặt phẳng (Oxy) đường thẳng ∆K luôn luôn tiếp xúc với một đường tròn cố định.


A.
K luôn luôn tiếp xúc với đường tròn tâm A(0 ; 1) bán kính R = 1
B.
K luôn luôn tiếp xúc với đường tròn tâm O(0 ; 0) bán kính R = 1
C.
K luôn luôn tiếp xúc với đường tròn tâm A(1 ; 0) bán kính R = 1
D.
K luôn luôn tiếp xúc với đường tròn tâm O(0 ; 0) bán kính R = -1
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta chứng minh trong mặt phẳng (Oxy) thì ∆K luôn luôn tiếp xúc với đường tròn tâm O(0 ; 0) bán kính R = 1. Thật vậy, trong mặt phẳng (Oxy) phương trình  ∆K là

2kx + (1 – k2)y – (1 + k2) = 0                   (suy ra từ (**))

⇒ d(O , ∆K) = \dpi{100} \frac{|1+k^{2}|}{\sqrt{(2k)^{2}+(1-k^{2})^{2}}} = \dpi{100} \frac{1+k^{2}}{\sqrt{(1+k^{2})^{2}}} = 1

Vậy ∆K luôn luôn tiếp xúc với đường tròn tâm O(0 ; 0) bán kính R = 1

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.