Skip to main content

Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình bình hành, AB = a√2, BC = a√6 và độ dài các cạnh bên bằng a√5. Gọi giao điểm của AC và BD là H. Tính thể tích khối cầu ngoại tiếp hình tứ diện SHAB.

Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình bình hành, AB

Câu hỏi

Nhận biết

Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình bình hành, AB = a√2, BC = a√6 và độ dài các cạnh bên bằng a√5. Gọi giao điểm của AC và BD là H. Tính thể tích khối cầu ngoại tiếp hình tứ diện SHAB.


A.
Vmc = \frac{7\pi a^{3}}{2}
B.
Vmc = \frac{9\pi a^{3}}{2}
C.
Vmc = \frac{5\pi a^{3}}{2}
D.
Vmc =\frac{3\pi a^{3}}{2}
Đáp án đúng: B

Lời giải của Luyện Tập 365

+ Ta có ∆ABC và ∆SBD là tam giác cân nên SH⊥(ABCD),

SH2 = SD2 – DH2 = SA2 – AH2 =>DH = AH =>AC = BD=> Tứ giác ABCD là hình chữ nhật.

AC2 = AB2 + BC2 = 8a2 =>AC = 2a√2 =>AH = a√2.

SH2 = SA2 – AH2 = 3a2 => SH = a√3.

+ Do ∆HAB vuông tại H, nên tâm O của mặt cầu ngoại tiếp tứ diện SHAB là giao điểm của trục ∆HAB với mặt phẳng trung trực của cạnh SH. Khi đó ta có: R2 = OH2\frac{BC^{2}}{4}  + \frac{SH^{2}}{4} = ( \frac{a\sqrt{6}}{2} )2 + ( \frac{a\sqrt{3}}{2} )2 = ( \frac{3a}{2} )2

Vậy , Vmc = \frac{4}{3}πR3 = \frac{4}{3}π\frac{27a^{3}}{8}\frac{9\pi a^{3}}{2}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.