Skip to main content

Trong hệ tọa độ Oxy, cho đường thẳng d: y=√3. Gọi (C) là đường tròn cắt d tại 2 điểm B, C sao cho tiếp tuyến của (C) tại B và C cắt nhau tại O. Viết phương trình đường tròn (C), biết tam giác OBC đếu.

Trong hệ tọa độ Oxy, cho đường thẳng d: y=√3. Gọi (C) là đường tròn cắt d tại 2 điểm B,

Câu hỏi

Nhận biết

Trong hệ tọa độ Oxy, cho đường thẳng d: y=√3. Gọi (C) là đường tròn cắt d tại 2 điểm B, C sao cho tiếp tuyến của (C) tại B và C cắt nhau tại O. Viết phương trình đường tròn (C), biết tam giác OBC đếu.


A.
x2 + (y-\frac{4\sqrt{3}}{3})2=\frac{8}{3}
B.
x2 + (y-\frac{4\sqrt{3}}{3})2=\frac{5}{3}
C.
x2 + (y-\frac{4\sqrt{3}}{3})2=\frac{4}{3}
D.
x2 + (y-2)2=\frac{4}{3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi (C) có tâm I bán kính R. OI cắt BC tại H thì H là trung điểm BC và OH vuông góc BC => H(0;√3) => OH=√3

Do tam giác OBC đều nên OH=\frac{BC\sqrt{3}}{2}= √3 \Leftrightarrow  BC=2

Trong tam giác vuông OIB có:

HB2=HI.HO=1 => IH=\frac{1}{\sqrt{3}}

\overrightarrow{HI}=\frac{1}{3}\overrightarrow{OH}=\left ( 0;\frac{\sqrt{3}}{3} \right )\Rightarrow I\left ( 0;\frac{4\sqrt{3}}{3} \right )

Trong tam giác vuông IBH có:

R2 = IB2 = IH2 + HB2=\frac{4}{3}

Vậy phương trình đường tròn (C) là: x2 + (y-\frac{4\sqrt{3}}{3})2=\frac{4}{3}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx