Skip to main content

Giải hệ phương trình với x, y ∈ R ; \begin{cases} x^{2}y-2x^{2}-2y^{2}+5y-2=0\\ \sqrt{y^{2}+1}+\sqrt{x-y}=2xy-x^{2}+\sqrt{x^{2}-2xy+y^{2}+1}+\sqrt{y} \\ \end{cases}

Giải hệ phương trình với x, y ∈ R ;

Câu hỏi

Nhận biết

Giải hệ phương trình với x, y ∈ R ;

\begin{cases} x^{2}y-2x^{2}-2y^{2}+5y-2=0\\ \sqrt{y^{2}+1}+\sqrt{x-y}=2xy-x^{2}+\sqrt{x^{2}-2xy+y^{2}+1}+\sqrt{y} \\ \end{cases}


A.
(x; y) = (2; 2)
B.
(x; y) = (3; 5)
C.
(x; y) = (4; 2)
D.
(x; y) = (1; 3)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Giải hệ phương trình với x, y ∈ R

\begin{cases} x^{2}y-2x^{2}-2y^{2}+5y-2=0 \: \: \: (1)\\ \sqrt{y^{2}+1}+\sqrt{x-y}=2xy-x^{2}+\sqrt{x^{2}-2xy+y^{2}+1}+\sqrt{y}\: \: \: \: \: (2) \\ \end{cases}

Từ phương trình (2) ta có điều kiện: x ≥ y , y ≥ 0

\sqrt{y^{2}+1} - √y - y2 = \sqrt{(x-y)^{2}+1}-\sqrt{x-y} - (x – y)2

Xét hàm số f(t) = \sqrt{t^{2}+1} - √t - t2  liên tục [0; +∞ )

Có  f'(t) = \frac{1}{\sqrt{t^{2}+1}}-\frac{1}{2\sqrt{t}} - 2t = t(\frac{1}{\sqrt{t^{2}+1}} - 2) - \frac{1}{2\sqrt{t}} < 0, ∀t > 0

Suy ra hàm số nghịch biến (0; +∞ ) nên f(y) = f(x - y) <=> x = 2y

Thay vào (1) ta có  (y – 2)(x2 – x + 1) = 0 <=> y = 2 => x = 4

Vậy hệ có nghiệm (x; y) = (4; 2).

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx