Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} 3^{x}+3^{1-y}=4\\ \frac{1}{2}log_{3}x^{2}-log_{3} y=0 \end{matrix}\right.

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} 3^{x}+3^{1-y}=4\\ \frac{1}{2}log_{3}x^{2}-log_{3} y=0 \end{matrix}\right.


A.
 x = y = 4
B.
 x = y = 1
C.
 x = y = -1
D.
 x = y = 0
Đáp án đúng: B

Lời giải của Luyện Tập 365

Điều kiện x ≠ 0, y > 0

Ta có \frac{1}{2}log3x2 – log3y = 0

⇔ log3 |x| = log3y ⇔ |x| = y ⇔ [\begin{matrix} x=y\\x=-y \end{matrix}

* Với x = y, thay vào phương trình thứ nhất ta được 3x + 31-x = 4

⇔ 32x – 4.3x + 3 = 0 ⇔ [\begin{matrix} 3^{x}=1\\3^{x}=3 \end{matrix} ⇔ [\begin{matrix} x=0(ktm)\\x=1 \end{matrix}

* Với x = -y, thay vào phương trình thứ nhất ta được 3x + 31+x = 4

⇔ 3x = 1 ⇔ x = 0 (ktm)

Vậy nghiệm của hệ phương trình là x = y = 1

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.