Skip to main content

Cho x, y ∈ R và x > 1, y > 1. Tìm giá trị nhỏ nhất của biểu thức p = \frac{(x^{3}+y^{3})-(x^{2}+y^{2})}{(x-1)(y-1)}

Cho x, y ∈ R và x > 1, y > 1. Tìm giá trị nhỏ nhất của biểu thức p

Câu hỏi

Nhận biết

Cho x, y ∈ R và x > 1, y > 1. Tìm giá trị nhỏ nhất của biểu thức p = \frac{(x^{3}+y^{3})-(x^{2}+y^{2})}{(x-1)(y-1)}


A.
Giá trị nhỏ nhất của P là 5.
B.
Giá trị nhỏ nhất của P là 6.
C.
Giá trị nhỏ nhất của P là 7.
D.
Giá trị nhỏ nhất của P là 8.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đặt t = x + y ; t > 2. Áp dụng BĐT 4xy ≤ (x + y)2 ta có xy ≤ \frac{t^{2}}{4}

P = \frac{t^{3}-t^{2}-xy(3t-2)}{xy-t+1}

Do 3t – 2 > 0  và –xy ≥ - \frac{t^{2}}{4} nên ta có:   P ≥ \frac{t^{3}-t^{2}-\frac{xy(3t-2)}{4}}{\frac{t^{2}}{4}-t+1}\frac{t^{2}}{t-2}

Xét hàm số : f(t) = \frac{t^{2}}{t-2}; f’(t) = \frac{t^{2}-4t}{(t-2)^{2}}; f’(t) = 0 ⇔\left\{\begin{matrix}t=0\\t=4\end{matrix}\right.

Do đó minP = \min_{(2;+)}f(t) = f(4) = 8 đạt được khi   \left\{\begin{matrix}x-y+2=0\\xy=4\end{matrix}\right.\left\{\begin{matrix}x=2\\y=2\end{matrix}\right.

Giá trị nhỏ nhất của P là 8.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.