Skip to main content

Cho x, y, z thảo mãn x2 + y2 ≤ xz + yz - 2xy Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4)( \frac{1}{4x^{4}}+ \frac{1}{4y^{4}}+ \frac{1}{4z^{4}} \right)

Cho x, y, z thảo mãn x2 + y2 ≤ xz + yz - 2xy
Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4

Câu hỏi

Nhận biết

Cho x, y, z thảo mãn x+ y2 ≤ xz + yz - 2xy

Tìm giá trị nhỏ nhất của p =(x4 + y4 + z4)( \frac{1}{4x^{4}}+ \frac{1}{4y^{4}}+ \frac{1}{4z^{4}} \right)


A.
\frac{81}{5}
B.
\frac{81}{8}
C.
\frac{83}{8}
D.
\frac{81}{7}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Áp dụng bất đẳng thức Cô-si cho 2 số dương và bất đẳng thức: 

a2 + b2  ≥ \frac{(a+b)^{2}}{2}

Ta có: P\geq \left ( \frac{(x^{2}+y^{2})^{2}}{2} +z^{4}\right )\left ( \frac{1}{2x^{2}y^{2}}+\frac{1}{z^{4}} \right )\geq \left ( \frac{(x+y)^{4}}{8}+z^{4}\right )\left ( \frac{8}{(x+y)^{4}}+\frac{1}{z^{4}} \right )

Đặt t = \frac{(x+y)^{4}}{z^{4}} => 0 < t ≤ 1

. Khi đó ta có: P\geq \left ( \frac{t}{8}+1 \right )\left ( \frac{8}{t}+1 \right )=2+\frac{t}{8}+\frac{8}{t}

Xét hàm số: f(t)=2+\frac{t}{8}+\frac{8}{t}\Rightarrow f'(t)=\frac{1}{8}-\frac{8}{t^{2}}<0, \forall t\in (0;1]

Ta có f(x) nghịch biến trên (0;1] \Rightarrow \min_{t\in (0;1]}P=f(1)=\frac{81}{8}

Khi đó x=y=\frac{z}{2}

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx