Skip to main content

Cho tập A={0,1,2,3,4,5,6,7}. Hỏi từ A lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau sao cho mỗi chữ số đó đều lớn hơn 2011

Cho tập A={0,1,2,3,4,5,6,7}. Hỏi từ A lập được bao nhiêu số tự nhiên chẵ

Câu hỏi

Nhận biết

Cho tập A={0,1,2,3,4,5,6,7}. Hỏi từ A lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau sao cho mỗi chữ số đó đều lớn hơn 2011


A.
250 số
B.
782 số
C.
150 số
D.
630 số
Đáp án đúng: D

Lời giải của Luyện Tập 365

Giả sử số thỏa mãn bài toán là overline{abcd}. Theo bài ra ta có:

a∈{2,3,4,5,6,7}; d∈{0;2;4;6}

Xét 2 trường hợp:

TH1: d=0. khi đó a có 6 cách chọn, c có 5 cách chọn

Suy ra có: 6.6.5=180 số

TH2: d∈{2,4,6}. Khi đó d có 3 cách chọn,a có 5 cách chọn, b ó 6 cách chọn, c có 5 cách chọn

Suy ra có: 3.5.6.5=450 số

Vậy có các số thỏa mãn là 180+450=630

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.