Skip to main content

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ xuống mặt phẳng (ABC) trung với tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích xung quanh của hình lăng trụ, biết góc BAA’ = 450.

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu củ

Câu hỏi

Nhận biết

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ xuống mặt phẳng (ABC) trung với tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích xung quanh của hình lăng trụ, biết góc BAA’ = 450.


A.
Sxq = \frac{a^{2}(2+\sqrt{2})}{2}
B.
Sxq = \frac{a^{2}(2-\sqrt{2})}{2}
C.
Sxq = \frac{a^{2}(3+\sqrt{2})}{2}
D.
Sxq = \frac{a^{2}(3-\sqrt{2})}{2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi O là đáy của ABC. Ta có: A’O ⊥ mp(ABC) mà AB ⊥ CO nên AB ⊥mp(A’CO). Gọi H là giao điểm của AB và CO thì AH ⊥AB. Suy ra góc BAA’ = 450

 => AA’ = AH√2 = \frac{a\sqrt{2}}{2}; AH = A’H =\frac{a}{2}

Do đó SBB’C’C = \frac{a^{2}}{2}. Vì AO ⊥BC nên  AA’ ⊥BC => BB’ ⊥BC => BB’C’C cũng là hình chữ nhật.

 Vậy SBB’C’C = BB’.BC = \frac{a^{2}\sqrt{2}}{2}

Sxq\frac{a^{2}(2+\sqrt{2})}{2}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?