Cho khai triển P(x) = (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12 .Tìm hệ số a7
Câu hỏi
Nhận biết
Cho khai triển P(x) = (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12 .Tìm hệ số a7
A.
a7 = 45
B.
a7 = -45
C.
a7 = -40
D.
a7 = 40
Đáp án đúng: C
Lời giải của Luyện Tập 365
P(x)=( (1 - x + x2 - x3)4 = (1 - x)4 (1 + x2)4
= ((-1)k xk)(x2i)
=> => (k; i) ∈ {(1; 3), (3; 2)}
=> a7 = - - = -40
Câu hỏi liên quan
Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: == Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: ==, d':== và tạo với đường thẳng d một góc .
Cho hàm số y = . a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.
Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.
Cho hàm số y = a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.