Skip to main content

Cho hình chóp S.ABCD đáy ABCD là hình thang đáy lớn AB = 2, tam giác ACB vuông tại C, các tam giác SAC và SBD là các tam giác đều cạnh bằng √3. Tính thể tích của hình chóp S.ABCD.

Cho hình chóp S.ABCD đáy ABCD là hình thang đáy lớn AB = 2, tam giác ACB vuông tại C, các

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD đáy ABCD là hình thang đáy lớn AB = 2, tam giác ACB vuông tại C, các tam giác SAC và SBD là các tam giác đều cạnh bằng √3. Tính thể tích của hình chóp S.ABCD.


A.
VS.ABCD = √2 (đvtt)
B.
VS.ABCD = \frac{1}{3} (đvtt)
C.
VS.ABCD = \frac{\sqrt{6}}{4} (đvtt)
D.
VS.ABCD = \frac{3\sqrt{3}}{4} (đvtt)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Vì tam giác SAC và SBD đều cạnh √3 nê AC = BD hay tứ giác ABCD là hình thang cân.

Lại có góc ACB vuông nên hình thang ABCD nội tiếp đường tròn đường kính AB.

Gọi H là trung điểm AB khi đó SH vuông góc (ABCD) hay SH là đường cao của hình chóp

Ta có BC = \sqrt{4-3} = 1 nên SH = \sqrt{SB^{2}-HB^{2}} = √2

Lại có SABCD\frac{3\sqrt{3}}{4} (do ABCD là nửa lục giác đều)

Vậy VS.ABCD\frac{1}{3}.\frac{3\sqrt{3}}{4}.√2 = \frac{\sqrt{6}}{4} (đvtt)

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx