Skip to main content

Cho hình chóp S.ABCD có thể tích bằng 18(đvtt), cạnh SD=6. Hãy tính độ dài các cạnh còn lại của tứ diện, biết rằng các cạnh đó đều có độ dài bằng nhau

Cho hình chóp S.ABCD có thể tích bằng 18(đvtt), cạnh SD=6. Hãy tính độ d

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có thể tích bằng 18(đvtt), cạnh SD=6. Hãy tính độ dài các cạnh còn lại của tứ diện, biết rằng các cạnh đó đều có độ dài bằng nhau


A.
SA=SB=SC=AB=BC=CD=DA=3\sqrt{2}
B.
SA=SB=SC=AB=BC=CD=DA= 5\sqrt{3}
C.
SA=SB=SC=3\sqrt{2} AB=BC=CD=DA=3
D.
SA=SB=SC=AB=BC=CD=DA=3
Đáp án đúng: A

Lời giải của Luyện Tập 365

Từ giả thiết suy ra ABCD là hình thoi. Do A và C cách đều S, B,D nên  BD⊥(SAC).

Gọi I là tâm của đáy ABCD. Các tam giác ABC, ACD,SAC là các tam giác cân bằng nhau có đáy AC chung, nên IB=ID=IS. Do đó tam giác SBD vuong tại S.

Đặt x = SA = SB = SC = AB = BC = CD = DA

Ta có SI ⊥ AC, AC ⊥ BD => IC⊥(SBD)

Suy ra 

VSBCD \frac{1}{6}CI.SB.SD=\frac{1}{6}.6.x.\sqrt{CD^{2}-ID^{2}}.

Mặt khác ID\frac{1}{4}BD2 =  \frac{1}{4}(SB2+SD2)=  \frac{1}{4}(36+x2)

Do đó VS.ABCD = 2VSBCD = 2x.\sqrt{x^{2}-\frac{1}{4}(36+x^{2})} = x\sqrt{3x^{2}-36}

Ta có phương trình:

x\sqrt{3x^{2}-36} = 18 <=> 3x4-36x2-324 = 0  <=> x2= 18 <=> x=3\sqrt{2}

Vậy độ dài các cạnh còn lại của tứ diện là x=3\sqrt{2}

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.