Skip to main content

Cho hình chóp S.ABCD có SC ⊥ (ABCD), đáy ABCD là hình thoi có cạnh bằng a√3 và \widehat{ABC} = 1200. Biết rằng góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 450. Tính theo a thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng SA và AD.

Cho hình chóp S.ABCD có SC ⊥ (ABCD), đáy ABCD là hình thoi có cạnh bằng a√3 và  = 1200.

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có SC ⊥ (ABCD), đáy ABCD là hình thoi có cạnh bằng a√3 và \widehat{ABC} = 1200. Biết rằng góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 450. Tính theo a thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng SA và AD.


A.
VS.ABCD = \frac{a^{3}}{4} ; d(SA, BD) = \frac{3\sqrt{5}a}{10}
B.
VS.ABCD = \frac{a^{3}\sqrt{3}}{4} ; d(SA, BD) = \frac{3\sqrt{5}a}{10}
C.
VS.ABCD = \frac{\sqrt{3}a^{3}}{2} ; d(SA, BD) = \frac{3\sqrt{5}a}{10}
D.
VS.ABCD = \frac{3\sqrt{3}a^{3}}{4} ; d(SA, BD) = \frac{3\sqrt{5}a}{10}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Kẻ SK ⊥ AB => hình chiếu CK ⊥ AB

=> ((SAB, (ABCD)) =\widehat{SKC} = 450

\widehat{ABC} =1200 => \widehat{CBK} = 600 => CK = CB.sin60\frac{3a}{2}

=> SC = CK.tan45\frac{3a}{2} .   (1)

SABCD = AB.BC.sin120\frac{3\sqrt{3}a^{2}}{2} . (2)

Từ (1) và (2) => VS.ABCD \frac{1}{3} SC.SABCD\frac{3\sqrt{3}a^{3}}{4} .

Gọi O = AC ∩ BD .

Vì BD ⊥ AC, BD ⊥ SC nên BD ⊥ (SAC) tại O

Kẻ OI ⊥ SA => OI là đường vuông góc chung của BD là SA .

Sử dụng hai tam giác đồng dạng AOI và ASC hoặc đường cao của tam giác SAC suy ra

OI = \frac{3a}{2\sqrt{5}}\frac{3\sqrt{5}a}{10}

Suy ra d(SA, BD) =  \frac{3\sqrt{5}a}{10} .

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.