Skip to main content

Cho hình chóp S.ABCD có đáy là hình bình hành với BA = a; BC = a√2, BD = a√5. Hình chiếu vuông góc của đỉnh S lên mặt đáy là trọng tâm của tam giác ABC và khoảng cách từ G đến mặt phẳng (SAB) bằng \frac{a}{\sqrt{10}} . Tính thể tích khối chóp S.ABCD theo a

Cho hình chóp S.ABCD có đáy là hình bình hành với BA = a; BC = a√2, BD = a√5. Hình

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy là hình bình hành với BA = a; BC = a√2, BD = a√5. Hình chiếu vuông góc của đỉnh S lên mặt đáy là trọng tâm của tam giác ABC và khoảng cách từ G đến mặt phẳng (SAB) bằng \frac{a}{\sqrt{10}} . Tính thể tích khối chóp S.ABCD theo a


A.
VS.ABCD \frac{a^{3}}{5}
B.
VS.ABCD \frac{a^{3}}{3}
C.
VS.ABCD \frac{2a^{3}}{5}
D.
VS.ABCD = 2.\frac{a^{3}}{3}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Áp dụng định lí đường trung tuyến tam giác, ta có:

OA2 = \frac{AB^{2}+AD^{2}}{2} - \frac{BD^{2}}{4}= \frac{a^{2}}{4}

=> AC = a => BC2 = AB2 + AC2

=> AB ⊥ AC

Suy ra: SABCD = 2SABC = a2

Vẽ GH // OA (H ∈ AB ), hạ GK ⊥ SH, ta có: AB ⊥ GH, AB ⊥ SG  =>  AB ⊥ GK.

Suy ra: GK ⊥ (SAB)  =>  GK = \frac{a}{\sqrt{10}} và GH = \frac{2}{3}.OA = \frac{a}{3}

Nên \frac{1}{GS^{2}}= \frac{10}{a^{2}} - \frac{9}{a^{2}} = \frac{1}{a^{2}} => GS = a. Kết luận: VS.ABCD  = \frac{a^{3}}{3}

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.