Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông .Đường thẳng SD tạo với đáy ABCD một góc 600 .Gọi M là trung điểm AB .Biết MD =\frac{3\sqrt{5}}{2}a ,mặt phẳng (SDM)và mặt phẳng (SAC) cùng vuông góc với đáy .tính thể tích hình chóp S.ABCD và khoảng cách giữa hai đường thẳng CD và SM theo a.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông .Đường thẳng SD tạo với đáy ABCD một góc

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông .Đường thẳng SD tạo với đáy ABCD một góc 600 .Gọi M là trung điểm AB .Biết MD =\frac{3\sqrt{5}}{2}a ,mặt phẳng (SDM)và mặt phẳng (SAC) cùng vuông góc với đáy .tính thể tích hình chóp S.ABCD và khoảng cách giữa hai đường thẳng CD và SM theo a.


A.
VS.ABCD = 3\sqrt{15}a3 ; d(CD, SM) = 2\frac{\sqrt{15}}{4}a
B.
VS.ABCD = 5\sqrt{15}a3 ; d(CD, SM) = 3\frac{\sqrt{15}}{4}a
C.
VS.ABCD = 3\sqrt{15}a3 ; d(CD, SM) = \frac{\sqrt{15}}{4}a
D.
VS.ABCD = 3\sqrt{15}a3 ; d(CD, SM) = 3\frac{\sqrt{15}}{4}a
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có AD2 + AM2 = MD2 <=>AD2 + \frac{AD^{2}}{4} = \frac{45}{4}a

<=>AD = 3a => SABCD = 9a2

Gọi H là giao điểm của AC VÀ DM. Do (SAC) và (SDH) cùng  vuông góc với đáy (ABCD) nên SH (ABCD),  suy ra \angle SDH= 600;

SH = HD .tan600 = \frac{2}{3}DMtan600 = \sqrt{15}a.

(vi H là trọng tâm giác ADB) 

Vậy VS.ABCD\frac{1}{3}SH.SABCD=   = \frac{1}{3}\sqrt{15}a9a2 = 3\sqrt{15}a3

Gọi E là hình chiếu vuông góc của H lên AB và k là hình chiếu của H lên SE,khi đó AB⊥(SHE) =>AB ⊥ HK suy ra HK ⊥ (SAB).

Mặt khác do CD // (SAB) nên ta có

d(CD, SM) = d(CD, (SAB)) = d(D, (SAB)) = 3d(H, (SAB))

= 3HK = \frac{3HE.HS}{\sqrt{HE^{2}+HS^{2}}} = \frac{AD.HS}{\sqrt{\left ( \frac{1}{3AD} \right )^{2}}+HS^{2}} = 3\frac{\sqrt{15}}{4}a

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?