Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều, SC = a√2 . Gọi M là trung điểm của AD. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng CM và SD.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều,

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều, SC = a√2 . Gọi M là trung điểm của AD. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng CM và SD.


A.
V = 2a3; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
B.
V = \frac{a^{2}\sqrt{3}}{6}; d(CM; SD) = 4a
C.
V = \frac{a^{2}\sqrt{3}}{3}; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
D.
V = \frac{a^{2}\sqrt{3}}{6}; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm của AB, vì tam giác SAB đều nên SH ⊥ AB (1)

Tam giác SBC có SB = BC = a, SC = a√2 nên vuông tại B

BC ⊥ AB, BC ⊥ SB => BC ⊥ (SAB) => SH ⊥ BC      (2)

Từ (1) và (2) => SH ⊥ (ABCD)

V = \frac{1}{3} SH.SABCD \frac{1}{3}.\frac{a\sqrt{3}}{2} .a2\frac{a^{2}\sqrt{3}}{6}

Dễ dàng chứng minh được CM ⊥ HD

Ta có HD ⊥ CM, SH ⊥ CM => CM ⊥ (SHD)

Gọi I là giao điểm của CM và HD. Kẻ IK ⊥ SD thì IK là đoạn vuông góc chung của CM và SD.

Xét tam giác SHD, IKD tính được 

IK = \frac{a\sqrt{3}}{2\sqrt{10}} => d(CM; SD)=\frac{a\sqrt{3}}{2\sqrt{10}}

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.