Skip to main content

Cho hình chóp S.ABC có SA = 3a (a > 0), SA tạo với đáy (ABC) góc 600. Tam giác ABC vuông tại B, góc ACB bằng 300. G là trọng tâm của tam giác ABC, hai mặt phẳng (SGB), (SGC) cùng vuông góc với đáy. Tính thể tích khối chóp theo a.

Cho hình chóp S.ABC có SA = 3a (a > 0), SA tạo với đáy (ABC) góc 600. Tam giác ABC vuông

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có SA = 3a (a > 0), SA tạo với đáy (ABC) góc 600. Tam giác ABC vuông tại B, góc ACB bằng 300. G là trọng tâm của tam giác ABC, hai mặt phẳng (SGB), (SGC) cùng vuông góc với đáy. Tính thể tích khối chóp theo a.


A.
V = \frac{240a^{3}}{112}
B.
V = \frac{241a^{3}}{112}
C.
V = \frac{243a^{3}}{112}
D.
V = \frac{253a^{3}}{112}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Mặt phẳng (SGB), (SGC) cắt nhau theo giao tuyến SG và cùng vuông góc với mặt phẳng đáy nên SG là đường cao của hình chóp.

Góc SAG = 600, trong tam giác vuông SGA có:

SG = SA.sin60= \frac{3a\sqrt{3}}{2}; AG = SA.cos60\frac{3a}{2},

AK = \frac{3}{2}AG = \frac{9a}{4} với K là trung điểm của BC

Đặt AB = x, tam giác vuông ABC có: BC = AB.cot30= x√3 => BK = \frac{x\sqrt{3}}{2}

Trong tam giác vuông ABK có AK= AB2 + BK2

=> \frac{81a^{2}}{16} = x2 + \frac{3x^{2}}{4}  =  \frac{7x^{2}}{4} ⇔ x = \frac{9a}{2\sqrt{7}}

Diện tích tam giác ABC là S = \frac{1}{2} .AB.2BK = \frac{81a^{2}\sqrt{3}}{56}

Thể tích V = \frac{1}{3}.SG.SABC \frac{243a^{3}}{112} (đvtt)

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?