Skip to main content

Cho các số thực không âm x, y , z thỏa mãn x2 + y2 + z2 = 3. Tìm giá trị lớn nhất của biểu thức: P = xy + yz + zx + \frac{5}{x+y+z}.

Cho các số thực không âm x, y , z thỏa mãn x2 + y2

Câu hỏi

Nhận biết

Cho các số thực không âm x, y , z thỏa mãn x2 + y2 + z2 = 3. Tìm giá trị lớn nhất của biểu thức: P = xy + yz + zx + \frac{5}{x+y+z}.


A.
maxP = \frac{14}{3}.
B.
maxP = \frac{13}{4}.
C.
maxP = \frac{13}{6}.
D.
maxP = \frac{13}{3}.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: xy + yz + zx =  \frac{(x+y+z)^{2}-(x^{2}+y^{2}+z^{2})}{2} 

\frac{(x+y+z)^{2}-3}{2}

Đặt t = x + y + z, ta có: 0 ≤ xy + yz +zx = \frac{t^{2}-3}{2}≤ x2 + y2 + z2 = 3 =>√3≤ t ≤ 3.

Khi đó,  ta có: P = f(t) = \frac{t^{2}-3}{2} + \frac{5}{t}, f’(t) = t - \frac{5}{t^{2}}  = \frac{t^{3}-5}{t^{2}} > 0, ∀t ≥ √3.

Vậy ta có: P = f(t) ≤ f(3) = \frac{14}{3}

Dấu “=” xảy ra khi x = y = z = 1. Vậy maxP = \frac{14}{3}.

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.