Skip to main content

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất của biểu thức:  P = \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{xy+z^{2}}

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất

Câu hỏi

Nhận biết

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất của biểu thức: 

P = \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{xy+z^{2}}


A.
Pmin = -2
B.
Pmin = 2
C.
Pmin \frac{3}{2} 
D.
Pmin = - \frac{3}{2} 
Đáp án đúng: C

Lời giải của Luyện Tập 365

Do x, y  ∊ (0;1] và x + y ≥ 1 + z => x ≥ z, y ≥ z

Ta có xy + z2 ≤ 2xy ≤ \frac{(x+y)^{2}}{2} ≤ x + y  do x + y ≤ 2

P ≥ \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} = \frac{1}{2} [(x+y) + ( y+z) +(z+x)] ( \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}) -3 ≥ \frac{9}{2} - 3 = \frac{3}{2}

=> P ≥ \frac{3}{2} 

Dấu " = " xáy ra <=> x = y =z =1

Vậy Pmin \frac{3}{2} khi  x = y =z =1

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.