Skip to main content

Cho ba số thực dương x,y,z thay đổi thoả mãn x + y + z ≥ 6 Tìm giá trị nhỏ nhất của biểu thức P=\frac{x^{2}}{yz+\sqrt{1+x^{3}}}+\frac{y^{2}}{zx+\sqrt{1+y^{3}}}+\frac{z^{2}}{xy+\sqrt{1+z^{3}}}

Cho ba số thực dương x,y,z thay đổi thoả mãn x + y + z ≥ 6
Tìm giá trị nhỏ n

Câu hỏi

Nhận biết

Cho ba số thực dương x,y,z thay đổi thoả mãn x + y + z ≥ 6

Tìm giá trị nhỏ nhất của biểu thức P=\frac{x^{2}}{yz+\sqrt{1+x^{3}}}+\frac{y^{2}}{zx+\sqrt{1+y^{3}}}+\frac{z^{2}}{xy+\sqrt{1+z^{3}}}


A.
Min P = \frac{3}{7}
B.
Min P = \frac{6}{7}
C.
Min P = \frac{12}{7}
D.
Min P = \frac{24}{7}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Áp dụng bổ đề: Với a,b,c > 0 thì \frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\geq \frac{(x+y+z)^{2}}{a+b+c}

Ta có: P ≥ \frac{(x+y+z)^{2}}{xy+yz+zx+\sqrt{1+x^{3}}+\sqrt{1+y^{3}}+\sqrt{1+z^{3}}}

Lại có: \sqrt{1+x^{3}}=\sqrt{(1+x)(1-x+x^{2})}\leq \frac{2+x^{2}}{2}

Dấu bằng xảy ra khi x = 2

Suy ra: P ≥ 2.\frac{(x+y+z)^{2}}{2(xy+yz+zx)+x^{2}+y^{2}+z^{2}+6}=\frac{2.(x+y+z)^{2}}{(x+y+z)^{2}+6}

Đặt: t = (x+y+z)(t ≥ 36)

Ta có: P ≥ \frac{2t}{t+6}

Xét hàm số f(t)=\frac{2t}{t+6} trên [36;+∞)

f'(t) ≥ 0

=> Hàm số f(t) đồng biến trên [36;+∞)

=> f(t) ≥ f(36) = \frac{12}{7}

Vậy Min P = \frac{12}{7} khi x = y = z = 2

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.