Skip to main content

Cho 3 số thực dương a, b, c thỏa mãn: a + 2b + 4c = 12 Tìm giá trị lớn nhất của biểu thức:                P = \frac{2ab}{a+2b} + \frac{8bc}{2b+4c} + \frac{4ac}{4c+a}.

Cho 3 số thực dương a, b, c thỏa mãn: a + 2b + 4c = 12
Tìm giá trị l

Câu hỏi

Nhận biết

Cho 3 số thực dương a, b, c thỏa mãn: a + 2b + 4c = 12
Tìm giá trị lớn nhất của biểu thức: 
              P = \frac{2ab}{a+2b} + \frac{8bc}{2b+4c} + \frac{4ac}{4c+a}.


A.
x = ± 5, x =  ± 2.
B.
x = ± 2, x =  ± 2.
C.
x = ± 1, x =  ± 4.
D.
x = ± 1, x =  ± 2.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đặt |2x|  = y > 0, log2 y = t ta được phương trình sau:

t2 – 5t + ty – 2y + 6 = 0   ⇔   t2 – t(5 – y) + 6 – 2y = 0

Coi đây là phương trình ẩn t, tham số y thì ∆ = (y - 1)2  => \begin{bmatrix} t=2\\t=3-y \end{bmatrix}.

Nếu t = 2 =>  log2 y = 2 => y = 4 => 2|x| = 4 => x =  ± 2

Nếu t = 3-y =>  log2 y = 3 - y => y = 2 => x = ± 1

Kết luận: Phương trình có các nghiệm: x = ± 1, x =  ± 2.

 

 

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.