Skip to main content

Cho hình chóp tú giác đều S.ABCD, đáy ABCD là hình vuông cạnh a, mặt bên nghiêng với đáy một góc 600. Một mặt phẳng (P) qua AB và vuông góc với mặt phẳng (SCD) cắt SC, SD lần lượt tại C’ và D’. Tính thể tích khối chóp S.ABC’D’

Cho hình chóp tú giác đều S.ABCD, đáy ABCD là hình vuông cạnh a, mặt bên

Câu hỏi

Nhận biết

Cho hình chóp tú giác đều S.ABCD, đáy ABCD là hình vuông cạnh a, mặt bên nghiêng với đáy một góc 600. Một mặt phẳng (P) qua AB và vuông góc với mặt phẳng (SCD) cắt SC, SD lần lượt tại C’ và D’. Tính thể tích khối chóp S.ABC’D’


A.
V = \frac{1}{2}a3.
B.
V = \frac{\sqrt{3}}{16}a3.
C.
V = a3.
D.
V = \frac{\sqrt{3}}{2}a3.
Đáp án đúng: B

Lời giải của Luyện Tập 365

Gọi I là trung điểm AB, J là trung điểm CD => ∆SJI đều cạnh a. Gọi J' là giao điểm của C'D' và SI => SJ' = \frac{a}{2}, SJ' ⊥ (ABC'D'); C'D' = \frac{a}{2}; IJ' = \frac{a\sqrt{3}}{2}

SABC’D’\frac{(\frac{a}{2}+a)a\sqrt{3}}{4} = \frac{3a^{2}\sqrt{3}}{8}       ; V = \frac{\sqrt{3}}{16}a3.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .