Skip to main content

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 600. Một mặt cầu tâm O tiếp xúc với mặt đáy (ABC) tại A và tiếp xúc với đường thẳng BS tại H. Hãy xác định vị trí tương đối giữa H với hai điểm B, S và tính diện tích mặt cầu tâm O.

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên tạo với

Câu hỏi

Nhận biết

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 600. Một mặt cầu tâm O tiếp xúc với mặt đáy (ABC) tại A và tiếp xúc với đường thẳng BS tại H. Hãy xác định vị trí tương đối giữa H với hai điểm B, S và tính diện tích mặt cầu tâm O.


A.
H nằm giữa S và B, diện tích mặt cầu là:  Smc = 4πR2 = \frac{(19-8\sqrt{3})\pi a^{2}}{2}
B.
H nằm giữa S và B, diện tích mặt cầu là:  Smc = 4πR2 = \frac{(19+8\sqrt{3})\pi a^{2}}{2}
C.
H nằm giữa S và B, diện tích mặt cầu là:  Smc = 4πR2 = \frac{(19-8\sqrt{3})\pi a^{2}}{3}
D.
H nằm giữa S và B, diện tích mặt cầu là:  Smc = 4πR2 = \frac{(19+8\sqrt{3})\pi a^{2}}{3}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi G là trọng tâm của ∆ABC. Kẻ  OK ⊥SG, K ∈SG.

Khi đó: \widehat{SBG}= 600 nên SG = GBtan600 = \frac{a\sqrt{3}}{3}√3 = a

SB = \sqrt{SG^{2}+GB^{2}} = \sqrt{a^{2}+\frac{a^{2}}{3}} = \frac{2a\sqrt{3}}{3}

Do BH = BA = a và a < \frac{2a\sqrt{3}}{3} nên H nằm giữa S và B. Ta có: OH2 + HS2 = ÓS2 = OK2 + KS2 , OA = OH = GK = R (R là bán kính mặt cầu tâm O) nên :

R2 + (\frac{2a\sqrt{3}}{3} -a)2 = ( \frac{a\sqrt{3}}{3})2 + ( a – R)2 ⇔ R = \frac{(4-\sqrt{3})a}{2\sqrt{3}}

Do đó diện tích mặt cầu là:  Smc = 4πR2\frac{(19-8\sqrt{3})\pi a^{2}}{3}

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.