Skip to main content

Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.

Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phâ

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.


A.
A(3;1), C(-1;-3)
B.
A(3;1), C(1;3)
C.
A(3;-1), C(1;-3)
D.
A(3;1), C(1;-3)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Từ phương trình đường trung tuyến và đường phân giác kẻ từ đỉnh B ta suy ra B(1;1).

Gọi N là điểm đối xứng với M qua đường phân giác trong góc B .

Khi đó N nằm trên đường thẳng BC. ta có MN: x - y - 1 = 0

Gọi I là giao điểm của MN và đường phân giác trong góc B.

Khi đó I(\frac{3}{2};\frac{1}{2}). Ta có điểm N đối xứng với M qua I nên N(1;0).

Đường thẳng BC đi qua B(1;1) và N(1;0) nên BC: x = 1. Do đó C(1;c).

Đường thẳng AB đi qua B (1;1), M(2;1) nên AB: y=1. Do đó A(a;1), a>0

Trung điểm P(\frac{a+1}{2};\frac{c+1}{2} ) của AC thuộc dnên 2a +c -3=0    (1)

Tam giác ABC vuông tại B nên: R = PB = 5 ⇔ (a-1)2 + (c-1)2 =20           (2)

Từ (1) và (2) ta tìm được  A(3;1), C(1;-3).

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .