Skip to main content

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất của biểu thức:  P = \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{xy+z^{2}}

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất

Câu hỏi

Nhận biết

Cho ba số x, y,z thuộc nửa khoảng (0;1] và thoả mãn: x + y ≥1+ z . Tìm giá trị nhỏ nhất của biểu thức: 

P = \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{xy+z^{2}}


A.
Pmin = -2
B.
Pmin = 2
C.
Pmin \frac{3}{2} 
D.
Pmin = - \frac{3}{2} 
Đáp án đúng: C

Lời giải của Luyện Tập 365

Do x, y  ∊ (0;1] và x + y ≥ 1 + z => x ≥ z, y ≥ z

Ta có xy + z2 ≤ 2xy ≤ \frac{(x+y)^{2}}{2} ≤ x + y  do x + y ≤ 2

P ≥ \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} = \frac{1}{2} [(x+y) + ( y+z) +(z+x)] ( \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}) -3 ≥ \frac{9}{2} - 3 = \frac{3}{2}

=> P ≥ \frac{3}{2} 

Dấu " = " xáy ra <=> x = y =z =1

Vậy Pmin \frac{3}{2} khi  x = y =z =1

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.