Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-2}{1}=\frac{y-1}{4}=\frac{z-2}{1} Tìm tọa độ của  điểm A nằm trên trục Oy sao cho khoảng cách từ điểm A đến đường thẳng ∆ bằng 3. 

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆:  Tìm tọa độ của  điểm A nằm

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \frac{x-2}{1}=\frac{y-1}{4}=\frac{z-2}{1} Tìm tọa độ của  điểm A nằm trên trục Oy sao cho khoảng cách từ điểm A đến đường thẳng ∆ bằng 3. 


A.
A(0;2;1) và V(0;-16;0) 
B.
A(0;2;0) và A(0;-16;0) 
C.
A(0;2;0) 
D.
 A(0;-16;0) 
Đáp án đúng: B

Lời giải của Luyện Tập 365

AOy A(0;a;0). Đường thẳng ∆đi qua điểm M (2;1;2) và có vectơ chỉ phương \vec{u} =(1;4;1). 

\overrightarrow{AM} =(2;1−a;2),  [\overrightarrow{AM}\vec{u}]=(−a −7;0;a +7). Suy ra d (A,∆)= 3 ⇔   \frac{\left | [\overrightarrow{AM},\vec{u}] \right |}{\left | \vec{u} \right |}  = 3  

<=> \frac{\sqrt{(-a-7)^{2}+(a+7)^{2}}}{\sqrt{1^{2}+4^{2}+1^{2}}} = 3 <=> │a+7│ = 9 <=> a=2 hoặc a=-16

Vậy có 2 điểm A thỏa mãn yêu cầu A(0;2;0) và V(0;-16;0) 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.