Skip to main content

Cho ba số thực dương a, b, c thỏa mãn  c(a2 + b2) = a+b. Tìm giá trị nhỏ nhất của biểu thức  P = \frac{1}{(a+1)^{2}}+\frac{1}{(b+1)^{2}}+\frac{1}{(c+1)^{2}}+\frac{4}{(a+1)(b+1)(c+1)}

Cho ba số thực dương a, b, c thỏa mãn  c(a2 + b2) = a+b. Tìm giá trị nhỏ nhất của biểu thức 
P

Câu hỏi

Nhận biết

Cho ba số thực dương a, b, c thỏa mãn  c(a2 + b2) = a+b. Tìm giá trị nhỏ nhất của biểu thức 

P = \frac{1}{(a+1)^{2}}+\frac{1}{(b+1)^{2}}+\frac{1}{(c+1)^{2}}+\frac{4}{(a+1)(b+1)(c+1)}


A.
Pmin =- \frac{71}{108} 
B.
Pmin = \frac{91}{108} 
C.
Pmin = - \frac{91}{108} 
D.
Pmin = \frac{71}{108} 
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có c(a2 + b2) = a+b = > 2(a+b) = 2c(a2 + b2 ) ≥(a+b)2 => a+b ≤\frac{2}{c} 

= > (1+a)(1+b) ≤ \frac{1}{4} (2+a+b2) ≤ \frac{1}{4}(2+\frac{2}{c} )

\frac{1+c^{2}}{c^{2}} => \frac{1}{(1+a)(1+b)}\geq \frac{c^{2}}{1+c^{2}}

Theo Cô- si: P ≥ \frac{2}{(a+1)(b+1)}+\frac{1}{(c+1)^{2}}+\frac{4}{(a+1)(b+1)(c+1)}\geq \frac{2c^{2}+1}{1+c^{2}}+\frac{4c^{2}}{1+c^{3}}

\frac{2c^{3}+6c^{2}+c+1}{(c+1)^{3}}

Xét hàm số f(c) = \frac{2c^{3}+6c^{2}+c+1}{(c+1)^{3}}, f'(c) = \frac{2(5c-1)}{(1+c)^{4}} = 0 <=>  c= \frac{1}{5}

Lập bảng biến thiên: có f(c) ≥  f(\frac{1}{5}) = \frac{91}{108}

Suy ra P ≥  f(c) ≥  \frac{91}{108}=> Pmin = \frac{91}{108} <=> c=\frac{1}{5}, a=b=5

 

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.