Skip to main content

Trong mặt với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2AD. Gọi N là trung điểm của cạnh BC, M là một điểm thuộc cạnh CD sao cho DC = 4DM. Biết tọa độ M(1; 2), phương trình đường thẳng AN: 4x – y + 5 = 0. Tìm tọa độ đỉnh A biết xA <−\frac{1}{2}

Trong mặt với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2AD. Gọi N là trung điểm

Câu hỏi

Nhận biết

Trong mặt với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2AD. Gọi N là trung điểm của cạnh BC, M là một điểm thuộc cạnh CD sao cho DC = 4DM. Biết tọa độ M(1; 2), phương trình đường thẳng AN: 4x – y + 5 = 0. Tìm tọa độ đỉnh A biết xA <−\frac{1}{2}


A.
 A(-2;1)
B.
 A(-1;2)
C.
 A(-1;1)
D.
 A(1;1)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đặt DM = x (x>0). Khi đó:

AB = CD =4x , AD = BC = 2BN =2x

Ta có: S∆AMN = SABCD = S∆ADM -  S∆MCN - S∆ABN

= 8x2 – x2 \frac{3x^{2}}{2} - 2x2 \frac{7x^{2}}{2}

Mặt khác, S∆AMN = \frac{1}{2} d(M, AN).AN = \frac{1}{2}.\frac{7}{\sqrt{17}} x√17 = \frac{7x}{2}

Do đó ta có: x = 1, suy ra AM = √5

Gọi A(a,4a+5) thuộc AN. Khi đó, AM = √5 <=> \sqrt{(a-1)^{2}+(4a+3)^{2}} = √5

<=> 17a2 + 22a + 5 = 0 <=> \begin{bmatrix} a=-1\\ a=-\frac{5}{17} \end{matrix}

Vì  xA < - \frac{1}{2} nên a= -1. Vậy tọa đó A(-1;1)

 

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).