Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng
(P): x + 2y + 2z + 4 = 0 và mặt cầu (S): x2 + y2 + z2 – 10x – 2y – 6z + 10 = 0.
Từ điểm M trên (P) kẻ đường thẳng ∆ tiếp xúc với (S) tại điểm N. Xác định vị trí của điểm M để độ dài đoạn thẳng MN = √11
Mặt cầu (S) có tâm I(5; 1; 3) và bán kính R = 5
Vì MN là tiếp tuyến của mặt cầu nên NI ⊥ NM
IM = = = 6
Do đó điểm M thuộc mặt cầu (S') tâm I(5; 1; 3) và bán kính R' = 6
Vậy nên tập hợp điểm M là đường tròn (C) chính giao tuyến giữa mặt cầu (S') và mặt phẳng (P).
Tâm của (C) là hình chiếu vuông góc của I trên mặt phẳng (P) và ta dễ dàng xác định được tâm là điểm J( ; ; )
Bán kính của (C) là r =
= =